Abstract

The surface of multilayered opal crystals resulted in homeotropic alignment of liquid crystal (LC), originated from the surface topography of opal crystals rather than a chemical nature of the nanoparticles. The polar anchoring energy (5.51 × 10-5 J/m2) of the crystal surface for nematic LC molecules was in a similar range to the conventional polyimide alignment layer (2.11 × 10-5 J/m2) used for commercial applications. The critical length scale for anchoring transition was approximately Lw = ~1 μm. If a diameter of particle d << 1 μm for opal crystals, LC molecules preferred to anchor vertically to the surface to minimize elastic free energy of bulk LCs. The LC favored a planar anchoring if d >> 1 μm. The results provide crucial insights to understand the homeotropic alignment of LCs on solid surfaces and therefore offer opportunities to develop novel materials for a vertical alignment of LCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.