Abstract

Na+-dependent system ASC and Na+-independent system asc are characterized by a common selectivity for neutral amino acids of intermediate size such as L-alanine and by their interactions with dibasic amino acids. For system ASC, the positive charge on the dibasic amino acid side chain is considered to occupy the Na+-binding site on the transporter. We report here the use of harmaline (a Na+-site inhibitor in some systems) as a probe of possible structural homology between these two classes of amino acid transporter. Harmaline was found to inhibit human erythrocyte system ASC noncompetitively with respect to L-alanine concentration, but approximated competitive inhibition with respect to Na+ concentration (apparent Ki = 2.0 and 0.9 mM, respectively). Similarly, harmaline noncompetitively inhibited L-alanine uptake by horse erythrocyte systems asc1 and asc2 (apparent Ki = 2.0 and 1.9 mM, respectively). In contrast, harmaline functioned as a competitive inhibitor of L-lysine uptake by system asc1 (apparent Ki = 2.6 mM). It is concluded that harmaline competes with Na+ for binding to system ASC and that a topographically similar harmaline inhibition site is present on system asc. This site does not however bind Na+, the asc1 transporter exhibiting normal L-alanine and L-lysine influx kinetics in the total absence of extracellular cations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call