Abstract

In the present study, topographical characterization and microstructural interface analysis of vacuum-plasma-sprayed titanium and hydroxyapatite (HA) coatings on carbon fibre-reinforced polyetheretherketone (CF/PEEK) was performed. VPS-Ti coatings with high roughness values (Ra=28.29+/-3.07 microm, Rz=145.35+/-9.88 microm) were obtained. On this titanium, intermediate layer HA coatings of various thicknesses were produced. With increasing coating thickness, roughness values of the HA coatings decreased. A high increase of profile length ratio, Lr, of the VPS-Ti coatings (Lr=1.45) compared to the grit-blasted CF/PEEK substrate (Lr=1.08) was observed. Increasing the HA coating thickness resulted in a reduction of the Lr values similar to the roughness values. Fractal analysis of the obtained roughness profiles revealed that the VPS-Ti coatings showed the highest fractal dimension of D=1.34+/-0.02. Fractal dimension dropped to a value of 1.23-1.25 for all HA coatings. No physical deterioration of the CF/PEEK substrate was observed, indicating that substrate drying and the used VPS process parameter led to the desired coatings on the composite material. Cross-section analysis revealed a good interlocking between the titanium intermediate layer and the PEEK substrate. It is therefore assumed that this interlocking results in suitable mechanical adhesive strength. From the results obtained in this study it is concluded that VPS is a suitable method for manufacturing HA coatings on carbon fibre-reinforced PEEK implant materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.