Abstract
The visual system of cetaceans is at best poorly understood. With a handful of electrophysiological studies and a limited number of histological preparations from well-preserved specimen, the investigation of the principles underlying the cortical organization in cetaceans remains a challenge. In the course of our current investigation, we identified the transition from V2 to V1 in the long-finned pilot whale Globicephala melas, only recognizable through immunocytochemistry, and a similar if not homologue transition in the sheep Ovis aries. Our results emphasize the importance of differential pattern recognition in which the application of different markers uncovers a diversity in a delphinid's cortex, formerly widely considered as uniform and archetypal. In fact, the evidence that we present suggests the existence of relatively unacknowledged areas beyond the well-known sensory territories in cetaceans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.