Abstract

Peripheral nerves have an inherent capacity for regeneration, but these Schwann cell-mediated mechanisms are insufficient for severe injuries. With current clinical treatments, slow regeneration and aberrant reinnervation result in poor functional outcomes. Dental pulp stem cells (DPSCs) offer a promising source of therapeutic neurotrophic factors (NTFs), growth factors that stimulate axon regeneration. Previously, we established that DPSCs can generate scaffold-free sheets with a linearly aligned extracellular matrix (ECM). These sheets provide trophic cues via the DPSCs and directional cues through the aligned ECM to both accelerate and orient axon outgrowth, thus providing a biomaterial capable of addressing the current clinical challenges. DPSCs have a propensity for differentiating into Schwann cells (SC-DPSCs), further enhancing their endogenous NTF expression. Here, we evaluated the effect of inducing SC differentiation on the neuroregenerative bioactivity of our DPSC sheets. These sheets were formed on substrates with linear microgrooves to direct the cells to deposit an aligned ECM. Inducing differentiation using an SC differentiation medium (SCDM) increased NTF expression 2-fold compared to unaligned uDPSC sheets, and this effect was amplified in linearly oriented SC-DPSC sheets by up to 8-fold. Furthermore, these aligned SC-DPSC sheets remodeled the sheet ECM to more closely emulate a regenerative neural microenvironment, expressing 8-fold and 2 × 107-fold more collagen IV and laminin, respectively, than unaligned uDPSC sheets. These data demonstrate that the chemical cues of the SCDM and the mechanotransductive cues of the aligned cell sheet synergistically enhanced the differentiation of DPSCs into repair SC-like cells. To evaluate their functional effects on neuritogenesis, the DPSC sheets were directly cocultured with neuronally differentiated neuroblastoma SH-SY5Y cells. In this in vitro culture system, the aligned SC-DPSC sheets promoted oriented neurite-like outgrowth similar to aligned uninduced DPSC sheets and increased collateral branching, which may emulate stages associated with natural SC-mediated repair processes. Therefore, linearly aligned SC-DPSC sheets have the potential to both promote nerve regeneration and reduce aberrant reinnervation, thus providing a promising biomaterial for applications to improve the treatment of peripheral nerve injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call