Abstract

A well‐suited model to simulate cellular population dynamics is the two‐dimensional cellular automaton model, which consists of a lattice of sites, the value ai,j of each site being updated in discrete time steps according to an identical deterministic rule depending on a neighbourhood of sites around it. A cellular automaton is described which mimics cell population proliferation by replacing the site values by the age and the cycle phase of cells. The model takes into account the size of the cells. It is used to simulate the proliferation of the human breast cancer cell line MCF‐7 and the results of the simulation are compared with experimental data obtained from a light microscopic image analysis of the proliferation process. The initial configuration of the cellular automaton is obtained from the discretization of the results of the initial stage of the image processing. After each day of proliferation the pattern obtained from the simulation is compared to the experimental result of the corresponding image analysis. The comparison is made from a topographical point of view through the concept of the minimal spanning tree graph. The agreement between experiment and model is a good starting point to complex models such as cell proliferation under growth effectors or drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.