Abstract

AbstractAimSpecies range contractions are increasingly common globally. The niche reduction hypothesis posits that geographic range contractions are often patterned across space owing to heterogeneity in threat impacts and tolerance. We applied the niche reduction hypothesis to the decline of a threatened marsupial predator across northern Australia, the northern quoll (Dasyurus hallucatus).LocationNorthern Australia.MethodsWe assembled a database containing 3,178 historic and contemporary records for northern quolls across the extent of their distribution dating between 1778 and 2019. Based on these records, we estimated changes in the geographic range of the northern quoll using α‐hulls across four main populations. We then examined how range contractions related to factors likely to mediate the exposure, susceptibility, or tolerance of northern quolls to threats.ResultThe extent of range contractions showed an east–west gradient, most likely reflecting the timing of spread of introduced cane toads (Rhinella marina). There were clear changes in environmental characteristics within the contemporary compared to the historic geographic range, with the most substantial occurring in populations that have suffered the greatest range contractions. The contemporary range is comprised of higher quality habitats (measured using environmental niche models), characterized by higher topographical ruggedness and annual rainfall, and reduced distance to water, compared to the historic range.Main conclusionsChanges to range and niche likely reflect the capacity of complex habitats to ameliorate threats (namely predation and altered fire regimes), and access to resources that increase threat tolerance. This study highlights the multivariate nature of ecological refuges and the importance of high‐quality habitats for the persistence of species exposed to multiple threats. Our methods provide a useful framework which can be applied across taxa in providing valuable insight to management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.