Abstract

Abstract Estimating biologically meaningful geographic distances is essential for research in disciplines ranging from landscape genetics to community ecology. Topographically correcting distances to account for the total overland distance between locations imposed by topographic relief provides one method for calculating geographic distances that account for landscape structure. Here, I present topoDistance, an r package for calculating shortest topographic distances, weighted topographic paths and topographic least cost paths (LCPs). Topographic distances are calculated by weighting the edges of a graph by the hypotenuse of the horizontal and vertical distances between raster cells and then finding the shortest total path between cells of interest. The package also includes tools for mapping topographic paths and plotting elevation profiles. Examples from a species with moderate dispersal abilities, the western fence lizard, inhabiting a topographically complex landscape, Yosemite National Park (USA), demonstrate that topographic distances can vary significantly from straight‐line distances, and topographic LCPs can trace very different routes from LCPs and shortest topographic paths. Topographic paths and distances are broadly useful for modelling geographic isolation resulting from dispersal limitation for organisms that interact with the topographic structure of a landscape during movement and dispersal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call