Abstract

Dendroecological and numerical methods were used to study the influence of topographic position on radial growth of Scots pine (Pinus sylvestris) stands exposed to soil dryness. The correlation structure of total tree-ring width and latewood width of eight scattered populations representing various topographic habitats (steep south-facing slopes, plateaus and hollows) within a rock-slide area (750 m a.s.l.) of about 1 km2 was investigated by principal component analysis. Scatter plots of component loadings indicated that (i) total ring width and latewood width are influenced by various climatic factors, (ii) stands growing at similar topographic position show a high agreement in year-to-year variability of radial growth, and (iii) distinct effects of topographic features (slope aspect, slope magnitude) on tree growth are modified by local disturbances (erosion, grazing) and the age structure of stands. Furthermore, both the time series of component scores and non-metric multidimensional scaling of chronologies indicated years where extremely limiting or favorable climate conditions prevailed throughout the study area (pointer years). The influence of climate on tree growth in various topographic habitats was mediated through the influence of climatically stressful years. Because stands are located at sites with different levels of water stress, growth differences between chronologies are considered to be caused by site-specific susceptibility of tree growth to soil dryness. Significant correlations between precipitation in April to June and ring-width confirm that water availability is the primary growth-limiting factor within the study area. These small-scale variations in growth-climate relationships have significant implications for dendroclimatological studies. So paleoclimatic reconstructions based on tree rings will have to assure that an unbiased data set is used, which compensates for local growth-variabilities due to site related environmental stresses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call