Abstract

The topographic potential and the direct topographic effect on the geoid are presented as surface integrals, and the direct gravity effect is derived as a rigorous surface integral on the unit sphere. By Taylor-expanding the integrals at sea level with respect to topographic elevation (H) the power series of the effects is derived to arbitrary orders. This study is primarily limited to terms of order H2. The limitations of the various effects in the frequently used planar approximations are demonstrated. In contrast, it is shown that the spherical approximation to power H2 leads to a combined topographic effect on the geoid (direct plus indirect effect) proportional to H˜2 (where terms of degrees 0 and 1 are missing) of the order of several metres, while the combined topographic effect on the height anomaly vanishes, implying that current frequent efforts to determine the direct effect to this order are not needed. The last result is in total agreement with Bjerhammar's method in physical geodesy. It is shown that the most frequently applied remove–restore technique of topographic masses in the application of Stokes' formula suffers from significant errors both in the terrain correction C (representing the sum of the direct topographic effect on gravity anomaly and the effect of continuing the anomaly to sea level) and in the term t (mainly representing the indirect effect on the geoidal or quasi-geoidal height).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.