Abstract
AbstractThe 2018 eruption of Kīlauea volcano, Hawai‘i, was its most effusive in over 200 years. We apply the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN‐A) interferometric synthetic aperture radar (InSAR) instrument to measure topographic change associated with the eruption. The GLISTIN‐A radar flew in response to the eruption, acquiring observations of Kīlauea on 7 days between 18 May and 15 September 2018. Topography differences were computed relative to GLISTIN‐A observations in 2017. Bare‐Earth topography and offshore bathymetry were used to correct for vegetation and creation of new coastal land within the lower East Rift Zone (LERZ) lava flow field. We estimate that the LERZ subaerial flows total bulk volume is 0.593 ± 0.011 km3 and that the summit collapse volume is −0.836 ± 0.002 km3. Within the temporal sampling and uncertainty from submarine flow volumes, we find that both the LERZ and caldera volume changes were approximately linear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.