Abstract

The evaluation of seismic site amplification and its relationship with geological structures play a vital role in earthquake engineering and hazard assessment. This study presents an analysis of topographic and geologic site amplification effects observed in the Qiaozhuang region, Sichuan Province, China. Seismic recordings at several monitoring stations installed on two slopes located at a distance of about 1 km in the study area after the 2008 Wenchuan earthquake provide evidence of strong and variable amplifications. To assess the combined effect of topographic and geological controls in slope response to seismic motions, we built 2D and 3D dynamic numerical models using monitoring data as inputs. Four layers with different P-wave velocities, based on geophysical survey in the study area, are considered in the numerical models. Models that only consider topography give an amplification factor of <3, which is much lower than the amplification factor of 5–6 from the monitoring data, while those models that considered both the topographic variation and four layers agree well with the monitoring data. The 3D modeling results show that the subsurface amplification factor is less than that on the slope surface even at the same elevation. This is also consistent with the monitoring data and further indicates that the combined topographic and geological amplification effect on the slope surface is more significant than the sole geological amplification effect inside the slope. Our numerical simulation results suggest that it is important to consider the combined topographic and geological amplification effects in the hazard assessment of seismically induced slope failures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.