Abstract

<p>The huge amount of water vapor in the atmosphere caused disastrous heavy rain and floods in early July 2018 in SW Japan. Here I present a comprehensive space geodetic study of water brought by this heavy rain done by using a dense network of Global Navigation Satellite System (GNSS) receivers. </p><p>First, I reconstruct sea level precipitable water vapor above land region on the heavy rain. The total amount of water vapor derived by spatially integrating precipitable water vapor on land was ~25.8 Gt, which corresponds to the bucket size to carry water from ocean to land. I then compiled the precipitation measured with a rain radar network. The data showed the total precipitation by this heavy rain as ~22.11 Gt.</p><p>Next, I studied the crustal subsidence caused by the rainwater as the surface load. The GNSS stations located under the heavy rain area temporarily subsided 1-2 centimeters and the subsidence mostly recovered in a day. Using such vertical crustal movement data, I estimated the distribution of surface water in SW Japan. </p><p>The total amount of the estimated water load on 6 July 2018 was ~68.2 Gt, which significantly exceeds the cumulative on-land rainfalls of the heavy rain day from radar rain gauge analyzed precipitation data. I consider that such an amplification of subsidence originates from the selective deployment of GNSS stations in the concave places, e.g. along valleys and within basins, in the mountainous Japanese Islands.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call