Abstract

A rigid inositol-derived monomer functionalized with azide and alkyne as the complementary reactive groups (CRGs) crystallized as three distinct polymorphs I-III. Despite the unsuitable orientation of CRGs in the crystals for complete polymerization, all the three polymorphs underwent regiospecific and quantitative topochemical azide-alkyne cycloaddition (TAAC) polymerization upon heating to yield three different polymorphs of 1,2,3-triazol-1,4-diyl-linked-poly-neo-inositol. The molecules in these polymorphs exploit the weak intermolecular interactions, free space in the crystal lattice, and heat energy for their large and cooperative molecular motion to attain a transient reactive orientation, ultimately leading to the regiospecific TAAC reaction yielding distinct crystalline polymers. This study cautions that the overreliance on topochemical postulates for the prediction of topochemical reactivity at high temperatures could be misleading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.