Abstract

Liquid Chromatography Tandem Mass Spectrometry experiments aim to produce high-quality fragmentation spectra, which can be used to annotate metabolites. However, current Data-Dependent Acquisition approaches may fail to collect spectra of sufficient quality and quantity for experimental outcomes, and extend poorly across multiple samples by failing to share information across samples or by requiring manual expert input. We present TopNEXt, a real-time scan prioritization framework that improves data acquisition in multi-sample Liquid Chromatography Tandem Mass Spectrometry metabolomics experiments. TopNEXt extends traditional Data-Dependent Acquisition exclusion methods across multiple samples by using a Region of Interest and intensity-based scoring system. Through both simulated and lab experiments, we show that methods incorporating these novel concepts acquire fragmentation spectra for an additional 10% of our set of target peaks and with an additional 20% of acquisition intensity. By increasing the quality and quantity of fragmentation spectra, TopNEXt can help improve metabolite identification with a potential impact across a variety of experimental contexts. TopNEXt is implemented as part of the ViMMS framework and the latest version can be found at https://github.com/glasgowcompbio/vimms. A stable version used to produce our results can be found at 10.5281/zenodo.7468914.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.