Abstract

The minimization of compliance subject to a mass constraint is the topology optimization design problem of interest. The goal is to determine the optimal configuration of material within an allowed volume. Our approach builds upon the well-known density method in which the decision variable is the material density in every cell in a mesh. In it’s most basic form the density method consists of three steps: 1) the problem is convexified by replacing the integer material indicator function with a volume fraction, 2) the problem is regularized by filtering the volume fraction field to impose a minimum length scale; 3) the filtered volume fraction is penalized to steer the material distribution toward binary designs. The filtering step is used to yield a mesh-independent solution and to eliminate checkerboard instabilities. In image processing terms this is a low-pass filter, and a consequence is that the decision variables are not independent and a change of basis could significantly reduce the dimension of the nonlinear programming problem. Based on this observation, we represent the volume fraction field with a truncated Fourier representation. This imposes a minimal length scale on the problem, eliminates checkerboard instabilities, and also reduces the number of decision variables by over 100 × (two dimensions) or 1000 × (three dimensions).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.