Abstract

AbstractThe top-k similarity joins have been extensively studied and used in a wide spectrum of applications such as information retrieval, decision making, spatial data analysis and data mining. Given two sets of objects \(\mathcal U\) and \(\mathcal V\), a top-k similarity join returns k pairs of most similar objects from \(\mathcal U \times \mathcal V\). In the conventional model of top-k similarity join processing, an object is usually regarded as a point in a multi-dimensional space and the similarity between two objects is usually measured by distance metrics such as Euclidean distance. However, in many applications an object may be described by multiple values (instances) and the conventional model is not applicable since it does not address the distributions of object instances. In this paper, we study top-k similarity join queries over multi-valued objects. We apply quantile based distance to explore the relative instance distribution among the multiple instances of objects. Efficient and effective techniques to process top-k similarity joins over multi-valued objects are developed following a filtering-refinement framework. Novel distance, statistic and weight based pruning techniques are proposed. Comprehensive experiments on both real and synthetic datasets demonstrate the efficiency and effectiveness of our techniques.KeywordsSynthetic DatasetMultiple InstancePruning TechniqueObject PairPruning RuleThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.