Abstract

TOPK/PBK (T-LAK Cell-Originated Protein Kinase) is a serine/threonine kinase that is highly expressed in a variety of human tumors and is associated with poor prognosis in many types of human malignancies. Its activation mechanism is not yet fully understood. A bidirectional signal transduced between TOPK and ERK2 (extracellular signal-regulated kinase 2) has been reported, with ERK2 able to phosphorylate TOPK at the Thr9 residue. However, mutated TOPK at Thr9 cannot repress cellular transformation. In the present study, Ser32 was revealed to be a novel phosphorylated site on TOPK that could be activated by ERK2. Phospho-TOPK (S32) was found to be involved in the resistance of renal cell carcinoma (RCC) to sorafenib. Herein, combined a TOPK inhibitor with sorafenib could promoted the apoptosis of sorafenib-resistant RCC. High expression of HGF/c-met contributes to activation of p-TOPK (S32) during the development of sorafenib resistance in RCC. The current research presents a possible mechanism of sorafenib resistance in RCC and identifies a potential diagnostic marker for predicting sorafenib resistance in RCC, providing a valuable supplement for the clinically targeted treatment of advanced RCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call