Abstract
Despite the proliferation of work on XML keyword query, it remains open to support keyword query over probabilistic XML data. Compared with traditional keyword search, it is far more expensive to answer a keyword query over probabilistic XML data due to the consideration of possible world semantics. In this paper, we firstly define the new problem of studying top-k keyword search over probabilistic XML data, which is to retrieve k SLCA results with the k highest probabilities of existence. And then we propose two efficient algorithms. The first algorithm PrStack can find k SLCA results with the k highest probabilities by scanning the relevant keyword nodes only once. To further improve the efficiency, we propose a second algorithm EagerTopK based on a set of pruning properties which can quickly prune unsatisfied SLCA candidates. Finally, we implement the two algorithms and compare their performance with analysis of extensive experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.