Abstract

This study addresses an image-matching problem in challenging cases, such as large scene variations or textureless scenes. To gain robustness to such situations, most previous studies have attempted to encode the global contexts of a scene via graph neural networks or transformers. However, these contexts do not explicitly represent high-level contextual information, such as structural shapes or semantic instances; therefore, the encoded features are still not sufficiently discriminative in challenging scenes. We propose a novel image-matching method that applies a topic-modeling strategy to encode high-level contexts in images. The proposed method trains latent semantic instances called topics. It explicitly models an image as a multinomial distribution of topics, and then performs probabilistic feature matching. This approach improves the robustness of matching by focusing on the same semantic areas between the images. In addition, the inferred topics provide interpretability for matching the results, making our method explainable. Extensive experiments on outdoor and indoor datasets show that our method outperforms other state-of-the-art methods, particularly in challenging cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.