Abstract
Manual processing of a large volume of video data captured through closed-circuit television is challenging due to various reasons. First, manual analysis is highly time-consuming. Moreover, as surveillance videos are recorded in dynamic conditions such as in the presence of camera motion, varying illumination, or occlusion, conventional supervised learning may not work always. Thus, computer vision-based automatic surveillance scene analysis is carried out in unsupervised ways. Topic modelling is one of the emerging fields used in unsupervised information processing. Topic modelling is used in text analysis, computer vision applications, and other areas involving spatio-temporal data. In this article, we discuss the scope, variations, and applications of topic modelling, particularly focusing on surveillance video analysis. We have provided a methodological survey on existing topic models, their features, underlying representations, characterization, and applications in visual surveillance’s perspective. Important research papers related to topic modelling in visual surveillance have been summarized and critically analyzed in this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.