Abstract
The prevalence of allergic skin disorders has increased rapidly, and development of therapeutic agents to alleviate the symptoms are still needed. In this study, we orally or topically administered the Janus kinase (JAK) inhibitors, tofacitinib and oclacitinib, in a mouse model of dermatitis, and compared the efficacy to reduce the itch and inflammatory response. In vitro effects of JAK inhibitors on bone marrow-derived dendritic cells (BMDCs) were analyzed. For the allergic dermatitis model, female BALB/c mice were sensitized and challenged with toluene-2,4-diisocyanate (TDI). Each JAK inhibitor was orally or topically applied 30 minutes before and 4 hours after TDI challenge. After scratching bouts and ear thickness were measured, cytokines were determined in challenged skin and the cells of the draining lymph node were analyzed by means of flow cytometry. In vitro, both JAK inhibitors significantly inhibited cytokine production, migration, and maturation of BMDCs. Mice treated orally with JAK inhibitors showed a significant decrease in scratching behavior; however, ear thickness was not significantly reduced. In contrast, both scratching behavior and ear thickness in the topical treatment group were significantly reduced compared with the vehicle treatment group. However, cytokine production was differentially regulated by the JAK inhibitors, with some cytokines being significantly decreased and some being significantly increased. In conclusion, oral treatment with JAK inhibitors reduced itch behavior dramatically but had only little effect on the inflammatory response, whereas topical treatment improved both itch and inflammatory response. Although the JAK-inhibitory profile differs between both JAK inhibitors in vitro as well as in vivo, the effects have been comparable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Pharmacology and Experimental Therapeutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.