Abstract

Basic science. Investigate the ability of local applicaiton of vancomycin, either in powder form or suspended within poly(lactic-co-glycolic acid) microspheres (MS), to treat infection using a rat spinal model. Surgical site infections (SSIs) are a serious complication after spine surgery and are associated with high morbidity and mortality and often caused my coagulase negative staphylococci. A comprehensive approach to reduce SSIs has been recommended including the use of topical vancomycin. Animal and human studies have shown improved control of infection with local compared to systemic antibiotics. K-wires seeded with methicillin-resistant Staphylococcus epidermidis RP62A (MRSE) were treated with vancomycin powder, carboxymethylcellulose sodium salt (CMC) (microsphere carrier), vancomycin powder, blank MS or vancomycin-loaded MS for 24 or 48h in vitro after which bacteria were enumerated. In addition, a spinal instrumentation model was developed in rats with a bacterial seeded K-wire implanted into the right side of L4 and L5. Rats underwent no treatment or were treated locally with either vancomycin powder, blank MS or vancomycin-loaded MS. After 8weeks, the K-wire, bone, soft tissue and wire fastener were cultured and results analyzed. Vancomycin powder and vancomycin-loaded MS resulted in significantly fewer bacteria remaining in vitro than did CMC. Vancomycin powder- treated animals' cultures were significantly lower than all other groups (P < 0.0001) with negative culture results, except for one animal. The vancomycin-loaded MS-treated animals had lower bone bacterial counts than the controls (P < 0.0279); blank MS-treated animals had no differences in bacterial densities when compared to non-treated animals. Vancomycin powder and vancomycin-loaded MS were active against MRSE in vitro, in a rat MRSE implant model; however, vancomycin MS were inferior to the topical vancomycin powder. Vancomycin powder prevented MRSE infection in a rat spinal implant infection model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.