Abstract

Fibrosis following breast radiotherapy for mammary cancer is a frequent undesired effect with objective (esthetic) and subjective (pain) consequences. Forty-four patients with clinical radiofibrosis following conservative treatment of breast cancer were evaluated for the local antifibrosis effect of copper zinc superoxide dismutase [SOD(Cu/Zn)]. Extracted SOD(Cu/Zn) in a concentration of 3,600 units/mg was applied as ointment to the fibrotic affected area, b.i.d. for 90 days, in a total dose of 40 mg. The radiofibrosis intensity was scored on the basis of clinical criteria (pain and the fibrosis area) before and after SOD(Cu/Zn) treatment. SOD(Cu/Zn) was found to be effective in reducing radiation induced fibrosis by a lowering pain score in 36/39 patients and a decrease of the fibrotic area size in half cases, after 6 months. The intensity and changes of breast fibrosis were assessed also by mammography and, for the topographical distribution of subcutaneous temperature, by infrared thermography. Mammography density suggested decreased fibrosis in one third of patients. Thermography showed that fibrosis was accompanied by two zones clinically indistinctive: a central area with maximum thermal activity, called "Maximal Thermic zone" (MTZ) and a peripheral area with less thermal activity but higher than in the surrounding normal tissue, "Transitional Thermic Zone" (TTZ). Both MTZ and TTZ were significantly decreased in 36/44 patients after SOD(Cu/Zn) treatment. Clinical changes persisted all along the study. Treatment was well tolerated except for one case of local allergic reaction, and no important side effects. Molecular mechanisms involved are discussed. Further studies are running to confirm and explain these results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.