Abstract

BackgroundThis study was designed to evaluate the effect of recombinant human thrombin (rThrombin) concentration on time to hemostasis (TTH), clot durability, and clot strength in settings that replicate the heparinization and platelet inhibition often found in surgical populations.MethodsA modified, anticoagulated rabbit arteriovenous shunt preparation was selected to model vascular anastomotic bleeding. Rabbits were treated with heparin or heparin + clopidogrel and TTH was measured after applying a range of topical rThrombin concentrations or placebo, in combination with absorbable gelatin sponge, USP. Treatments (placebo, rThrombin) were randomly assigned and the investigator was blinded to treatment. TTH was evaluated with the Kaplan-Meier method. After hemostasis was achieved, clot burst assessment was performed for heparin + clopidogrel treated animals. Clot viscoelastic strength and kinetics were measured in ex-vivo samples using thromboelastography (TEG) methods.ResultsTTH decreased with increasing concentrations of rThrombin in heparin-treated animals and was shorter after treatment with 1000 IU/mL rThrombin (73 seconds) than with 125 IU/mL rThrombin (78 seconds; p = 0.007). TTH also decreased with increasing concentrations of rThrombin in heparin + clopidogrel treated animals; again it was significantly shorter after treatment with 1000 IU/mL rThrombin (71 seconds) than with 125 IU/mL rThrombin (177 seconds; p < 0.001). Variability in TTH was significantly smaller after treatment with 1000 IU/mL rThrombin than after 125 IU/mL rThrombin, indicating greater reliability of clot formation (p < 0.001 for heparin or heparin + clopidogrel treatments). Clot durability was examined in heparin + clopidogrel treated animals. Clots formed in the presence of 1000 IU/mL rThrombin were significantly less likely to rupture during clot burst assessment than those formed in the presence of 125 IU/mL rThrombin (0% versus 79%, p < 0.001). In vitro clot strength and clot kinetics, as determined by TEG in heparin + clopidogrel samples, were positively associated with the amount of rThrombin activity added for clot initiation.ConclusionIn an animal model designed to replicate the anti-coagulation regimens encountered in clinical settings, topical rThrombin at 1000 IU/mL more reliably controlled the pharmacological effects of heparin or heparin + clopidogrel on hemostasis than rThrombin at 125 IU/mL. Results from in vitro assessments confirmed a positive relationship between the amount of rThrombin activity and both the rate of clot formation and clot strength.

Highlights

  • This study was designed to evaluate the effect of recombinant human thrombin concentration on time to hemostasis (TTH), clot durability, and clot strength in settings that replicate the heparinization and platelet inhibition often found in surgical populations

  • TTH was dependent on rThrombin concentration; for example, gauze soaked in rThrombin at concentrations from 500 to 2000 IU/mL stopped bleeding significantly faster in a rabbit model of hepatic bleeding than gauze soaked with rThrombin 100 IU/mL [9,10]

  • The effect of rThrombin concentration on TTH under varying conditions of pharmacologic anticoagulation and platelet inhibition was evaluated by performing in vivo experiments with a range of thrombin concentrations in a model of arterial anastomotic bleeding, in rabbits treated with heparin or with heparin + clopidogrel

Read more

Summary

Introduction

This study was designed to evaluate the effect of recombinant human thrombin (rThrombin) concentration on time to hemostasis (TTH), clot durability, and clot strength in settings that replicate the heparinization and platelet inhibition often found in surgical populations. In the study described a rabbit model of arterial anastomotic bleeding was used to examine the effect of recombinant human thrombin (rThrombin) concentration on time to hemostasis (TTH) under varying conditions of pharmacologic anticoagulation and platelet inhibition. 125 IU/mL human plasma-derived thrombin did not appear to be an adequate concentration for establishing durable clots in a healthy porcine model of liver injury [11]. Rebleeding was observed at a number of sites during the 12 minute evaluation period, thrombin at 125 IU/mL did not appear to be an adequate concentration for establishing durable clots. There is substantial inter-species heterogeneity in coagulation capacity, collectively these results suggest that there is an optimum concentration of topical thrombin needed at the wound for rapid TTH and durable clotting

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call