Abstract

Photodynamic Therapy (PDT), with topically applied 5-aminolaevulinic acid as the photosensitiser, is an effective treatment for various malignant and pre-malignant skin conditions. Several studies have shown the importance of fluence rate as well as fluence in the efficacy of PDT. We propose a measure of PDT efficacy, Photodynamic Damage Dose (PDD), which uses the product of instantaneous fluence rates, photosensitiser concentrations and oxygen concentrations in its calculation. We derive a qualitative numerical model of PDT and verify it by demonstrating an inverse fluence rate effect, increased efficacy of fractionated PDT, PDT induced hypoxia, and the dependence of photobleaching on fluence rate under certain circumstances. We recommend that fluence, fluence rate and any fractionation regime used should be detailed when reporting a trial as altering any of these has significant effects on PDT efficacy. The model predicts that low fluence rate irradiations should be as effective as high fluence rate irradiations if carried out over the same length of time. To test this we build a light emitting diode-based lamp (fluence rate of 7 mW cm −2 at 635 nm) and used it to treat 32 superficial basal cell carcinomas on 22 patients (30 min treatment time, fluence 12.6 J cm −2). The complete response rate at one year was 84%, which is comparable to that achieved using higher fluence rate sources for similar treatment times. We conclude that this robust, inexpensive light source is effective for topical PDT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.