Abstract

Topical gel formulations of diclofenac sodium were prepared by using sodium carboxymethylcellulose (NaCMC), a low-toxicity cellulose polymer as a gel-forming material that is biocompatible and biodegradable. The influence of various formulation variables, such as initial drug concentrations and NaCMC concentration, and certain skin permeation enhancers on release characteristics of the diclofenac sodium from the prepared gels through a standard cellophane membrane was studied in comparison with four commercially available gel formulations of diclofenac sodium. The cumulative amounts released and the apparent release rates were higher for the prepared gels in comparison with the commercial formulations. Skin permeation studies using abdominal rat skin revealed good improvement of skin permeation characteristics of diclofenac sodium using NaCMC gels as compared to the commercial gels. The cumulative amount permeated at 6h (μg/cm2), steady-state flux Jss (μg/cm2h), lag time tL (h), permeability coefficient kp (cm/s), partition coefficient k, and diffusion coefficient D (cm2/s) were determined for the prepared gels in comparison with the commercial gels. Skin permeation enhancers such as isopropyl alcohol (IPA), Tween 80, and α-tocopherol polyethylene glycol succinate (TPGS) exhibited little or no effect on the permeation characteristics of diclofenac sodium. Infrared (IR) spectrum and differential scanning calorimetry (DSC) studies on the pure diclofenac sodium, NaCMC, and their physical mixture at a 1:1 ratio revealed that there was no positive evidence for the interactions between the drug and NaCMC, indicating the compatibility of the drug and the vehicle. Based on experimental results, preparation of diclofenac sodium gels using NaCMC vehicle is promising.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call