Abstract
Drug delivery from topically instilled eye drops to the posterior segment of the eye has long been one of the greatest challenges of ocular drug development. We developed methods of liposome preparation utilizing a microfluidizer to achieve adjustable nanoparticle size (even less than 80nm) and high loading capacity of plasmid DNA. The microfluidizing process parameters were shown to affect the size of the liposomes. Higher operating pressures and passage for at least 10 times through the microfluidizer produced small liposomes with narrow size distribution. The liposomes were physically stable for several months at +4°C. In vivo distribution of the optimized liposome formulations in the rat eyes was investigated with confocal microscopy of the histological specimens. Transferrin was used as a targeting ligand directed to retinal pigment epithelium. Size dependent distribution of liposomes to different posterior segment tissues was seen. Liposomes with the diameter less than 80nm permeated to the retinal pigment epithelium whereas liposomes with the diameter of 100nm or more were distributed to the choroidal endothelium. Active targeting was shown to be necessary for liposome retention to the target tissue. In conclusion, these microfluidizer produced small liposomes in eye drops are an attractive option for drug delivery to the posterior segment tissues of the eye.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.