Abstract

Noninvasive delivery of macromolecules across intact skin is challenging but would allow for needle-free administration of many pharmaceuticals. Biphasic vesicles, a novel lipid-based topical delivery system, have been shown to deliver macromolecules into the skin. Investigation of the delivery mechanism of interferon alpha (IFN alpha), as a model protein, by biphasic vesicles could improve understanding of molecular transport through the stratum corneum and allow for the design of more effective delivery systems. The interaction of biphasic vesicles with human skin and isolated stratum corneum membrane was investigated by confocal microscopy, differential scanning calorimetry (DSC) and small- and wide-angle X-ray scattering (SAXS and WAXS). Confocal microscopy revealed that biphasic vesicles delivered IFN alpha intercellularly, to a depth of 70 microm, well below the stratum corneum and into the viable epidermis. DSC and SAXS/WAXS data suggest that the interaction of biphasic vesicles with SC lipids resulted in the formation of a three-dimensional cubic Pn3m polymorphic phase by the molecular rearrangement of intercellular lipids. This cubic phase could be an intercellular permeation nanopathway that may explain the increased delivery of IFN alpha by biphasic vesicles. Liposomes and submicrometer emulsion (the individual building blocks of biphasic vesicles) separately and methylcellulose gel, an alternative topical vehicle, did not induce a cubic phase and delivered low amounts of IFN alpha below the stratum corneum. Molecular modeling of the cubic Pn3m phase and lamellar-to-cubic phase transitions provides a plausible mechanism for transport of IFN alpha. It is hypothesized that induction of a Pn3m cubic phase in stratum corneum lipids could make dermal and transdermal delivery of other macromolecules also possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.