Abstract
Psoriasis is a chronic autoimmune skin disorder with substantial negative impact on the patient's quality of life. The present study was carried out to demonstrate the efficiency of a novel topical delivery system in the transport of two siRNAs for the treatment of psoriatic-like plaques. We designed and developed a novel fusogenic nucleic acid lipid particle (F-NALP) system containing two therapeutic nucleic acids, anti-STAT3 siRNA (siSTAT3) and anti-TNF-α siRNA (siTNF-α). Novel cationic amphiphilic lipid with oleyl chains was synthesized and used in the nanocarrier system. Therapeutic efficacies of F-NALPs were assessed using an imiquimod-induced psoriatic-like plaque model. Hydrodynamic size and surface potential of F-NALPs were 102 ± 6 nm and 32.14 ± 6.21 mV, respectively. F-NALPs delivered fluorescein isothiocyanate-siRNA to a skin depth of 360 µm. F-NALPs carrying siSTAT3 and siTNF-α significantly (p < 0.05) reduced expression of STAT3 and TNF-α mRNAs and IL-23 and Ki-67 proteins compared with solution, and was superior in comparison with Topgraf(®) (GlaxoSmithKline Pharmaceuticals Limited, Maharashtra, India). Our observations demonstrate that F-NALPs can efficiently carry siSTAT3 and siTNF-α into the dermis and combination of the two nucleic acids can synergistically treat psoriatic-like plaques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.