Abstract
In a real environment, acoustic and language features often vary depending on the speakers, speaking styles and topic changes. To accommodate these changes, speech recognition approaches that include the incremental tracking of changing environments have attracted attention. This paper proposes a topic tracking language model that can adaptively track changes in topics based on current text information and previously estimated topic models in an on-line manner. The proposed model is applied to language model adaptation in speech recognition. We use the MIT OpenCourseWare corpus and Corpus of Spontaneous Japanese in speech recognition experiments, and show the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.