Abstract

Abstract Purpose Opinion mining and sentiment analysis in Online Learning Community can truly reflect the students’ learning situation, which provides the necessary theoretical basis for following revision of teaching plans. To improve the accuracy of topic-sentiment analysis, a novel model for topic sentiment analysis is proposed that outperforms other state-of-art models. Methodology/approach We aim at highlighting the identification and visualization of topic sentiment based on learning topic mining and sentiment clustering at various granularity-levels. The proposed method comprised data preprocessing, topic detection, sentiment analysis, and visualization. Findings The proposed model can effectively perceive students’ sentiment tendencies on different topics, which provides powerful practical reference for improving the quality of information services in teaching practice. Research limitations The model obtains the topic-terminology hybrid matrix and the document-topic hybrid matrix by selecting the real user’s comment information on the basis of LDA topic detection approach, without considering the intensity of students’ sentiments and their evolutionary trends. Practical implications The implication and association rules to visualize the negative sentiment in comments or reviews enable teachers and administrators to access a certain plaint, which can be utilized as a reference for enhancing the accuracy of learning content recommendation, and evaluating the quality of their services. Originality/value The topic-sentiment analysis model can clarify the hierarchical dependencies between different topics, which lay the foundation for improving the accuracy of teaching content recommendation and optimizing the knowledge coherence of related courses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.