Abstract
In this study, we propose a framework for detecting topic evolutions in weighted citation networks. Citation networks are important in studying knowledge flows; however, citation network analysis has primarily focused on binary networks in which the individual citation influences of each cited paper in a citing paper are considered identical, even though not all cited papers have a significant influence on the cited publication. Accordingly, it is necessary to build and analyze a citation network comprising scholarly publications that notably impact one another, thus identifying topic evolution in a more precise manner. To measure the strength of citation influence and identify paper topics, we employ a citation influence topic model primarily based on topical inheritance between cited and citing papers. Using scholarly publications in the field of the protein p53 as a case study, we build a citation network, filter it using citation influence values, and examine the diffusion of topics not only in the field but also in the subfields of p53.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Association for Information Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.