Abstract

This work analyzes sensemaking frameworks and experiments with an iteratively designed visual analysis tool to identify design implications for facilitating research idea generation using visualizations. Our tool, ThoughtFlow, structures and visualizes literature collections using topic models to bridge the information gap between core activities during research ideation. To help users stay focused on a topic while discovering relevant documents, we designed and analyzed usage patterns for two types of embedded visualization that help determine document relevance while minimizing distraction. We analyzed how research ideation outcomes and processes differ when using ThoughtFlow and conventional search engines by augmenting insight-based evaluation with concept-map analysis. Our results suggest that operations afforded by topic models match well with later ideation stages when coherent topics have emerged, but not with early stages when users are still relying heavily on individual keywords to gather background knowledge. We also present qualitative evidence that citation sparklines encourage more exploration of recommended references, and that a preference for paper thumbnails may depend on the consistency between the evidence and the current mental frame.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.