Abstract

Video summarization aims to generate a short and compact summary to represent the original video. Existing methods mainly focus on how to extract a general objective synopsis that precisely summaries the video content. However, in real scenarios, a video usually contains rich content with multiple topics and people may cast diverse interests on the visual contents even for the same video. In this paper, we propose a novel topic-aware video summarization task that generates multiple video summaries with different topics. To support the study of this new task, we first build a video benchmark dataset by collecting videos from various types of movies and annotate them with topic labels and frame-level importance scores. Then we propose a multimodal Transformer model for the topic-aware video summarization, which simultaneously predicts topic labels and generates topic-related summaries by adaptively fusing multimodal features extracted from the video. Experimental results show the effectiveness of our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.