Abstract

Summary1. Research has often focused on pelagic food chains and processes of lakes; less is known about the contribution of benthic energy flows to whole‐lake ecosystem energetics. This stems from the fact that the shoreline and littoral habitats, which provide a key linkage between sediment and water column, have only recently become a significant focus for study.2. This study aimed to quantify the feeding and phosphorus allocation of a juvenile fish community in a littoral zone of a shallow lake in response to the biomass succession of the invertebrate prey community. Habitats comprising reed and adjacent open water were sampled over two consecutive years during day and night.3. Although there were substantial year‐to‐year differences in the biomass of invertebrates, the fish community composition, diet consumption rates and phosphorus allocations were very similar in both study years. Biomasses and predation impacts by juvenile fish on prey groups were substantially higher within the reeds than in the adjacent open water habitat. This may be explained by the refuge‐seeking behaviour of the fish.4. In general, invertebrates were negligibly influenced by fish feeding, with the exception for a strong top‐down control of large cladocerans. In response to the resulting low Daphnia biomass, fish were forced to switch to a higher degree of benthivory. Consequently, juvenile fish in littoral reed stands may shift benthic‐derived energy and phosphorus via the excretion of soluble reactive phosphorus into the open water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call