Abstract
A vast scenario of potential disease mechanisms and remedies is yet to be discovered. The field of Network Medicine has grown thanks to the massive amount of high-throughput data and the emerging evidence that disease-related proteins form 'disease modules'. Relying on prior disease knowledge, network-based disease module detection algorithms aim at connecting the list of known disease associated genes by exploiting interaction networks. Most existing methods extend disease modules by iteratively adding connector genes in a bottom-up fashion, while top-down approaches remain largely unexplored. We have created TOPAS, an iterative approach that aims at connecting the largest number of seed nodes in a top-down fashion through connectors that guarantee the highest flow of a Random Walk with Restart in a network of functional associations. We used a corpus of 382 manually selected functional gene sets to benchmark our algorithm against SCA, DIAMOnD, MaxLink and ROBUST across four interactomes. We demonstrate that TOPAS outperforms competing methods in terms of Seed Recovery Rate, Seed to Connector Ratio and consistency during module detection. We also show that TOPAS achieves competitive performance in terms of biological relevance of detected modules and scalability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.