Abstract

The displacement loop (D loop) is a DNA strand invasion product formed during homologous recombination. Disruption of nascent D loops prevents recombination, and during synthesis-dependent strand annealing (SDSA), disruption of D loops extended by DNA polymerase ensures a non-crossover outcome. The proteins implicated in D loop disruption are DNA motor proteins/helicases that act by moving DNA junctions. Here we report that D loops can also be disrupted by DNA topoisomerase 3 (Top3), and this disruption depends on Top3's catalytic activity. Yeast Top3 specifically disrupts D loops mediated by yeast Rad51/Rad54; protein-free D loops or D loop mediated by bacterial RecA protein or human RAD51/RAD54 resist dissolution. Also, the human Topoisomerase IIIa-RMI1-RMI2 complex is capable of dissolving D loops. Consistent with genetic data, we suggest that the extreme growth defect and hyper-recombination phenotype of Top3-deficient yeast cells is partially a result of unprocessed D loops.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call