Abstract
Meta-Interpretive Learners, like most ILP systems, learn by searching for a correct hypothesis in the hypothesis space, the powerset of all constructible clauses. We show how this exponentially-growing search can be replaced by the construction of a Top program: the set of clauses in all correct hypotheses that is itself a correct hypothesis. We give an algorithm for Top program construction and show that it constructs a correct Top program in polynomial time and from a finite number of examples. We implement our algorithm in Prolog as the basis of a new MIL system, Louise, that constructs a Top program and then reduces it by removing redundant clauses. We compare Louise to the state-of-the-art search-based MIL system Metagol in experiments on grid world navigation, graph connectedness and grammar learning datasets and find that Louise improves on Metagol’s predictive accuracy when the hypothesis space and the target theory are both large, or when the hypothesis space does not include a correct hypothesis because of “classification noise” in the form of mislabelled examples. When the hypothesis space or the target theory are small, Louise and Metagol perform equally well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.