Abstract

The recovery of top predators is thought to have cascading effects on vegetated ecosystems and their geomorphology1,2, but the evidence for this remains correlational and intensely debated3,4. Here we combine observational and experimental data to reveal that recolonization of sea otters in a US estuary generates a trophic cascade that facilitates coastal wetland plant biomass and suppresses the erosion of marsh edges-a process that otherwise leads to the severe loss of habitats and ecosystem services5,6. Monitoring of the Elkhorn Slough estuary over several decades suggested top-down control in the system, because the erosion of saltmarsh edges has generally slowed with increasing seaotter abundance, despite the consistently increasing physical stress in the system (that is, nutrient loading, sea-level rise and tidal scour7-9). Predator-exclusion experiments in five marsh creeks revealed that sea otters suppress the abundance of burrowing crabs, a top-down effect that cascades to both increase marsh edge strength and reduce marsh erosion. Multi-creek surveys comparing marsh creeks pre- and post-sea otter colonization confirmed the presence of an interaction between the keystone sea otter, burrowing crabsand marsh creeks, demonstrating the spatial generality of predator control of ecosystem edge processes: densities of burrowing crabs and edge erosion have declined markedly in creeks that have high levels of seaotter recolonization. These results show that trophic downgrading could be a strong but underappreciated contributor to the loss of coastal wetlands, and suggest that restoring top predators can help to re-establish geomorphic stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call