Abstract

In recent years, social media has become much more popular to use to express people's feelings in different forms. Social media such as X (i.e., Twitter) provides a huge amount of data to be analyzed by using sentiment analysis tools to examine the sentiment of people in an understandable way. Many works study sentiment analysis by taking in consideration the spatial and temporal dimensions to provide the most precise analysis of these data and to better understand people's opinions. But there is a need to facilitate and speed up the searching process to allow the user to find the sentiment analysis of recent top-k tweets in a specified location including the temporal aspect. This work comes with the aim of providing a general framework of data indexing and search query to simplify the search process and to get the results in an efficient way. The proposed query extends the fundamental spatial distance query, commonly used in spatial-temporal data analysis. This query, coupled with sentiment analysis, operates on an indexed dataset, classifying temporal data as positive, negative, or neutral. The proposed query demonstrates over a tenfold improvement in query time compared to the baseline index with various parameters such as top-k, query distance, and the number of query keywords.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.