Abstract

Lead-free metal halide light-emitting diodes (LEDs) based on cesium copper halide (CsCu2I3) self-trapped-exciton (STE) emissions show great potential in lighting and color display applications, especially because of their nontoxicity and earth abundance. However, so far, the efficiency and color purity of CsCu2I3-based LEDs remain low. Here we demonstrate the emission of a CsCu2I3 emitter can be enhanced and narrowed in a top-emitting microcavity device. Consequently, the CsCu2I3-based LED device with the assistance of a top-emitting microcavity has significantly narrowed and enhanced the emission spectrum with a full width at half-maximum of 59 nm and a maximum forward brightness of 14767 cd m-2. To the best of our knowledge, this work achieves the narrowest CsCu2I3 LED spectra and demonstrates the potential of employing the microcavity effect to increase the efficiency and color purity of STE-based light-emitting devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call