Abstract

Intelligent information systems captivate people's attention. Examples of such systems include driving support vehicles capable of sensing driver state and communication robots capable of interacting with humans. Modeling how people search visual information is indispensable for designing these kinds of systems. In this paper, we focus on human visual attention, which is closely related to visual search behavior. We propose a computational model to estimate human visual attention while carrying out a visual target search task. Existing models estimate visual attention using the ratio between a representative value of visual feature of a target stimulus and that of distractors or background. The models, however, can not often achieve a better performance for difficult search tasks that require a sequentially spotlighting process. For such tasks, the linear separability effect of a visual feature distribution should be considered. Hence, we introduce this effect to spatially localized activation. Concretely, our top-down model estimates target-specific visual attention using Fisher's variance ratio between a visual feature distribution of a local region in the field of view and that of a target stimulus. We confirm the effectiveness of our computational model through a visual search experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.