Abstract

Volcanic eruptions occur when a conduit forms to connect a crustal magma reservoir to Earth’s surface. Conduit formation is generally assumed to be a ‘bottom-up’ process and a major driver of precursory volcanic seismicity, which is the most commonly monitored parameter at volcanoes worldwide. If both assumptions are true, initial precursory seismicity should coincide spatially with petrologically-estimated magma reservoir depths. A review of well-constrained case studies of volcanoes that erupt after repose intervals of decades indicates that, to the contrary, initial precursory seismicity is consistently several kilometers shallower than the magma reservoir. We propose a model involving a three-phase process of unrest and eruption. Initial conduit formation occurs during a ‘staging’ phase, either aseismically or long before the onset of the immediate precursory run-up to eruption. Staging may involve slow ascent rates and/or small volumes. A destabilization phase then coincides with the onset of precursory seismicity, leading to an eruption phase. This model implies that, most critically, it may be possible to detect precursory magma ascent well before the onset of seismic activity by continuous monitoring of the state of stress in the mid to shallow crust.

Highlights

  • Magma migrates upwards from its ultimate source region in the mantle, often stalling in the midcrust for an indeterminate period of time before erupting

  • We propose a three-stage model of precursory magma ascent and eruption, involving a staging of magma at upper-crustal levels followed by a period of destabilization of the shallowly-staged magma, leading to tapping of deeper portions of the reservoir

  • Both authors contributed extensively to the work presented in this paper

Read more

Summary

INTRODUCTION

Magma migrates upwards from its ultimate source region in the mantle, often stalling in the midcrust for an indeterminate period of time before erupting. One reasonable firstorder assumption is that the time-depth progression of a monitored signal should reflect upward movement of magma before an eruption. Another is that the earliest instances of the precursory signal should coincide spatially with the location of the magma reservoir feeding the eruption, which may be constrained by various petrologic indicators. These two assumptions motivate our analysis of published studies documenting time-depth patterns of precursory seismic activity and petrologically-constrained source depths, with the aim of evaluating the spatiotemporal dynamics of magma ascent and developing paradigms that could extend forecasts of impending volcanic activity by months to years

BACKGROUND
DISCUSSION
SUMMARY

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.