Abstract

Buildings are responsible for a large share of greenhouse gas (GHG) emissions. The use of Life Cycle Assessment (LCA) during the design phase can help to improve the environmental performance of buildings. However, designers and clients find it difficult to set environmental performance targets and interpret the results obtained through LCA in order to improve the building design. Therefore, reference values or benchmarks are needed. Current available LCA-based benchmarks have mostly been developed for certification systems on whole building level and do not provide design guidance on material or element level. To close this gap, this paper introduces an alternative approach that supports the design process by providing guidance and encouraging to improve the environmental performance. The aim of this approach is to support exploiting the optimization potential particularly regarding the embodied GHG emissions related to the manufacturing of construction products and to the construction, maintenance and demolition of the building. The concept consists in combining top-down benchmarks per capita derived from the capacity of the global eco system with bottom-up reference values for building components that are defined based on a statistical best-in-class approach (top 5%) using the market share of different construction products. Benchmarks for GHG emissions for new residential buildings in Switzerland are discussed. The results of applying the dual benchmark approach to a case study show that it can facilitate the use of LCA-based tools for design support and promote the optimization of the building-related environmental performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call