Abstract

Effective visual search is essential for daily life, and attention orientation as well as inhibition of return play a significant role in visual search. Researches have established the involvement of dorsolateral prefrontal cortex in cognitive control during selective attention. However, neural evidence regarding dorsolateral prefrontal cortex modulates inhibition of return in visual search is still insufficient. In this study, we employed event-related functional magnetic resonance imaging and dynamic causal modeling to develop modulation models for two types of visual search tasks. In the region of interest analyses, we found that the right dorsolateral prefrontal cortex and temporoparietal junction were selectively activated in the main effect of search type. Dynamic causal modeling results indicated that temporoparietal junction received sensory inputs and only dorsolateral prefrontal cortex →temporoparietal junction connection was modulated in serial search. Such neural modulation presents a significant positive correlation with behavioral reaction time. Furthermore, theta burst stimulation via transcranial magnetic stimulation was utilized to modulate the dorsolateral prefrontal cortex region, resulting in the disappearance of the inhibition of return effect during serial search after receiving continuous theta burst stimulation. Our findings provide a new line of causal evidence that the top-down modulation by dorsolateral prefrontal cortex influences the inhibition of return effect during serial search possibly through the retention of inhibitory tagging via working memory storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call