Abstract

We developed a straightforward approach for high-throughput top-down glycolipidomics based on fully automated chip-nanoelectrospray (nanoESI) high-capacity ion trap (HCT) multistage mass spectrometry (MSn) by collision-induced dissociation (CID) in the negative ion mode. The method was optimized and tested on a polysialylated ganglioside fraction (GT1b), which was profiled by MS1 and sequenced in tandem MS up to MS6 in the same experiment. Screening of the fraction in the MS1 mode indicated the occurrence of six [M-2H]2- ions which, according to calculation, support 13 GT1 variants differing in their relative molecular mass due to dissimilar ceramide (Cer) constitutions. By stepwise CID MS2-MS5 on the doubly charged ion at m/z 1077.20 corresponding to a ubiquitous GT1b structure, the complete characterization of its oligosaccharide core including the identification of sialylation sites was achieved. Structure of the lipid moiety was further elucidated by CID MS6 analysis carried out using the Y0 fragment ion, detected in MS5, as a precursor. MS6 fragmentation resulted in a pattern supporting a single ceramide form having the less common (d20 : 1/18 : 0) configuration. The entire top-down experiment was performed in a high-throughput regime in less than 3 min of measurement, with an analysis sensitivity situated in the subpicomolar range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.