Abstract

Bionanomaterial based hydrogels originated from natural biopolymer have drawn much attention for advanced applications. However, nanosilk-based hydrogels derived from top-down approaches remain in their infancy. First, nanosilks based on existing methods fail to prepare hydrogels; second, both nanosilk extraction and surface modification remain a challenge due to high crystallinity and sophisticated hierarchical structures. To produce nanosilk-based hydrogels, pretreatment and oxidation are necessary. In this work, pretreatments were conducted first to loosen the sophisticated structures of natural silk fibers, NaClO oxidation was utilized in succession to introduce carboxyl groups onto silk fibroin. Combined with moderate mechanical disintegration, silk nanocrystals with additional carboxyl groups were prepared facilely. Finally, silk nanocrystal-based hydrogels were prepared successfully through gas phase coagulation. An optimization of pretreatment approaches and oxidation conditions was carried out. The morphologies, chemical and crystalline structures of original, pretreated and oxidized silk fibroin as well as nanofibrillated silk were investigated. In addition, the silk nanocrystal-based hydrogel exhibited outstanding mechanical properties compared to those of dissolved and regenerated silk fibroin-based hydrogels. Moreover, silk nanocrystal-based aerogels present highly porous, interconnected, and crisscrossed network nanostructures, which are ideal candidates for tissue regeneration and provide new prospects as porous scaffolds for bioengineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call