Abstract
Two‐dimensional (2D) nanomaterials are an attractive class of multifunctional materials owing to their unique chemical, electronic, and structural properties. Bottom‐up formation of 2D nanomaterials (solution processing, atomic‐layer deposition, chemical vapor deposition, etc.) affords direct control of material morphology and chemistry, tailoring their exhibited physicochemical properties. These methodologies, however, have limited throughput. The reduced output and expense of these bottom‐up methodologies limit their economic viability for mass production of multifunctional 2D nanomaterials. Top‐down approaches, through either exfoliation/delamination of a layered material or initiated targeted removal of a sacrificial component, are much more amenable to high production rates. Herein a unique electrochemical dealloying protocol is presented and analyzed for the synthesis of nanoporous iridium nanosheets (npIrx‐NS) from nonlayered, homogeneous alloy precursors. Through observations of combinatory effects of dealloying electrolyte and precursor alloy compositions, insights into the mechanism of formation and evolution of nanoporosity in free‐standing 2D flakes are gained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.