Abstract

Predator–prey interactions are of eminent importance as structuring forces for animal communities. The present study investigates if and how strongly the density of soil microarthropods is controlled by top-down forces, i.e. predation by mesostigmate mites (Mesostigmata, Acari). We set up a laboratory experiment running for ten weeks with undisturbed soil cores taken from the field using two densities of predatory mesostigmate mites: (1) ambient density (control) and (2) increased density (addition of seven Pergamasus septentrionalis and eight Lysigamasus sp. individuals). Increased predator density resulted in a decrease in the density of Oribatida, Collembola and Protura whereas the density of other taxa including Astigmata, Prostigmata and Uropodina was not significantly affected. Additionally, the species number of Oribatida was also not significantly affected. Taxa of Oribatida and Collembola were differently affected by increased predator density. Among Collembola, densities of Poduridae and Sminthuridae were reduced, whereas Entomobryidae were not affected. Among Oribatida, densities of Oppiidae and Suctobelbidae were reduced whereas Desmonomata, Poronota and Tectocepheus were not affected. Grouping of Oribatida into different size classes and into classes differing in sclerotization suggests that smaller mites (200–300 μm) and mites with less sclerotization were more heavily affected than larger mites and mites with strong sclerotization. The results indicate that predatory mesostigmate mites have the potential to control the density of certain taxa of soil microarthropods. In particular, small and little sclerotized prey is susceptible to predator control indicating that predator defense is an important component of the life history tactics of soil microarthropods, especially of Oribatida.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call